
Evaluation of the Raw Microprocessor:
An Exposed-Wire-Delay Architecture for ILP and Streams

Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff,
Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota,

Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank,
Saman Amarasinghe, and Anant Agarwal

CSAIL, Massachusetts Institute of Technology

ABSTRACT
This paper evaluates the Raw microprocessor. Raw addresses the
challenge of building a general-purpose architecture that performs
well on a larger class of stream and embedded computing appli-
cations than existing microprocessors, while still running existing
ILP-based sequential programs with reasonable performance in the
face of increasing wire delays. Raw approaches this challenge by
implementing plenty of on-chip resources – including logic, wires,
and pins – in a tiled arrangement, and exposing them through a new
ISA, so that the software can take advantage of these resources for
parallel applications. Raw supports both ILP and streams by rout-
ing operands between architecturally-exposed functional units over
a point-to-point scalar operand network. This network offers low
latency for scalar data transport. Raw manages the effect of wire
delays by exposing the interconnect and using software to orches-
trate both scalar and stream data transport.

We have implemented a prototype Raw microprocessor in IBM’s
180 nm, 6-layer copper, CMOS 7SF standard-cell ASIC process. We
have also implemented ILP and stream compilers. Our evaluation
attempts to determine the extent to which Raw succeeds in meeting
its goal of serving as a more versatile, general-purpose processor.
Central to achieving this goal is Raw’s ability to exploit all forms
of parallelism, including ILP, DLP, TLP, and Stream parallelism.
Specifically, we evaluate the performance of Raw on a diverse set
of codes including traditional sequential programs, streaming ap-
plications, server workloads and bit-level embedded computation.
Our experimental methodology makes use of a cycle-accurate sim-
ulator validated against our real hardware. Compared to a 180 nm
Pentium-III, using commodity PC memory system components, Raw
performs within a factor of 2x for sequential applications with a very
low degree of ILP, about 2x to 9x better for higher levels of ILP, and
10x-100x better when highly parallel applications are coded in a
stream language or optimized by hand. The paper also proposes a
new versatility metric and uses it to discuss the generality of Raw.

1. INTRODUCTION
Fast moving VLSI technology will soon offer billions of transis-

tors, massive chip-level wire bandwidth for local interconnect, and a
modestly larger number of pins. However, there is growing evidence
that wire delays become relatively more significant with shrinking
feature sizes and clock speeds [6, 29, 1]. Processors need to con-
vert the abundant chip-level resources into application performance,
while mitigating the negative effects of wire delays.

The advance of technology also expands the number of applica-
tions that are implementable in VLSI. These applications include
sequential programs that can run on today’s ILP-based micropro-
cessors, as well as highly parallel algorithms that are currently
implemented directly using application-specific integrated circuits

(ASICs). One such circuit is found in the Nvidia Ti 4600 graphics
accelerator, which executes hundreds of parallel operations per cy-
cle at 300 MHz. Many of these parallel ASICs implement algorithms
with computational demands that are far beyond the capabilities of
today’s general-purpose microprocessors.

The Raw project addresses the challenge of whether a future
general-purpose microprocessor architecture could be built that runs
a greater subset of these ASIC applications while still running the
same existing ILP-based sequential applications with reasonable
performance in the face of increasing wire delays. To obtain some
intuition on how to approach this challenge, we conducted an early
study [4, 48] on the factors responsible for the significantly better
performance of application-specific VLSI chips. We concluded that
there were four main factors: specialization; exploitation of paral-
lel resources (gates, wires and pins); management of wires and wire
delay; and management of pins.

1. Specialization: ASICs specialize each “operation” at the gate
level. In both the VLSI circuit and microprocessor context, an op-
eration roughly corresponds to the unit of work that can be done in
one cycle. A VLSI circuit forms operations by combinational logic
paths, or “operators”, between flip-flops. A microprocessor, on the
other hand, has an instruction set that defines the operations that can
be performed. Specialized operators, for example, for implementing
an incompatible floating point operation, or implementing a linear
feedback shift register, can yield an order of magnitude performance
improvement over an extant general purpose processor that may re-
quire many instructions to perform the same one-cycle operation as
the VLSI hardware. As an example, customized Tensilica ASIC pro-
cessors take advantage of specialization by augmenting a general
purpose processor core with specialized instructions for specific ap-
plications.

2. Exploitation of Parallel Resources: ASICs further exploit plen-
tiful silicon area to implement enough operators and communica-
tions channels to sustain a tremendous number of parallel operations
in each clock cycle. Applications that merit direct digital VLSI cir-
cuit implementations typically exhibit massive, operation-level par-
allelism. While an aggressive VLIW implementation like Intel’s Ita-
nium II [32] executes six instructions per cycle, graphics accelera-
tors may perform hundreds or thousands of word-level operations
per cycle. Because they operate on very small word operands, logic
emulation circuits such as Xilinx II Pro FPGAs can perform hun-
dreds of thousands of operations each cycle. The recent addition
of MMX and SSE-style multigranular instructions that operate on
multiple subwords simultaneously marks an effort to improve the
efficiency of microprocessors by exploiting additional parallelism
available due to smaller word sizes.

The Itanium II die photo reveals that less than two percent of
the die area is dedicated to its 6-way issue integer execution core.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

Clearly, the ALU area is not a significant constraint on the execu-
tion width of a modern-day wide-issue microprocessor. On the other
hand, the presence of many physical execution units is a minimum
prerequisite to the exploitation of the same massive parallelism that
ASICs are able to exploit.

3. Management of Wires and Wire Delay: ASIC designers can
place and wire communicating operations in ways that minimize
wire delay, minimize latency, and maximize bandwidth. In contrast,
it is now well known that the delay of the interconnect inside tra-
ditional microprocessors limits scalability [36, 1, 15, 38, 45]. Ita-
nium II’s 6-way integer execution unit presents evidence for this – it
spends over half of its critical path in the bypass paths of the ALUs.
ASIC designers manage wire delay inherent in large distributed ar-
rays of function units in multiple steps. First, they place close to-
gether operations that need to communicate frequently. Second,
when high bandwidth is needed, they create multiple customized
communication channels. Finally, they introduce pipeline registers
between distant operators, thereby converting propagation delay into
pipeline latency. By doing so, the designer acknowledges the inher-
ent tradeoff between parallelism and latency: leveraging more re-
sources requires signals to travel greater distances. The Alpha 21264
is an example of a microprocessor that acknowledges this tradeoff
on a small scale: it incurs a one-cycle latency for signals to travel
between its two integer clusters.

4. Management of Pins: ASICs customize the usage of their pins.
Rather than being bottlenecked by a cache-oriented multi-level hi-
erarchical memory system (and subsequently by a generic PCI-style
I/O system), ASICs utilize their pins in ways that fit the applications
at hand, maximizing realizable I/O bandwidth or minimizing la-
tency. This efficiency applies not just when an ASIC accesses exter-
nal DRAMs, but also in the way that it connects to high-bandwidth
input devices like wide-word analog-to-digital converters, CCDs,
and sensor arrays. There are currently few easy ways to arrange
for these devices to stream data into a general-purpose microproces-
sor in a high-bandwidth way, especially since DRAM must almost
always be used as an intermediate buffer. In some senses, micropro-
cessors strive to minimize, rather than maximize, the usage of pin
resources, by hiding them through a hierarchy of caches.

Our goal was to build a microprocessor that could leverage the
above four factors, and yet implement the gamut of general-purpose
features that we expect in a microprocessor such as functional unit
virtualization, unpredictable interrupts, instruction virtualization,
and data caching. The processor also needed to exploit ILP in se-
quential programs, as well as space and time multiplex (i.e., context
switch) threads of control. Furthermore, these multiple threads of
control should be able to communicate and coordinate in an efficient
fashion.

This paper evaluates the Raw microprocessor and discusses our
success in achieving these goals. Raw takes the following approach
to leveraging the four factors behind the success of ASICs.

1. Raw implements the most common operations needed by ILP
or stream applications in specialized hardware mechanisms. Most
of the primitive mechanisms are exposed to software through a new
ISA. These mechanisms include the usual integer and floating point
operations, specialized bit manipulation operations, scalar operand
routing between adjacent function units, operand bypass between
function units, registers and I/O queues, and data cache access (i.e.,
data load with tag check).

2. Raw implements a large number of these operators which exploit
the copious VLSI resources – including gates, wires and pins – and

exposes them through a new ISA, such that the software can take
advantage of them for both ILP and highly parallel applications.

3. Raw manages the effect of wire delays by exposing the wiring
channel operators to the software, so that the software can account
for latencies by orchestrating both scalar and stream data transport.
By orchestrating operand flow on the interconnect, Raw can also cre-
ate customized communications patterns. Taken together, the wiring
channel operators provide the abstraction of a scalar operand net-
work [45] that offers very low latency for scalar data transport and
enables the exploitation of ILP.

4. Raw software manages the pins for cache data fetches and for
specialized stream interfaces to DRAM or I/O devices.

We have implemented a prototype Raw microprocessor in the SA-
27E ASIC flow, which uses IBM’s CMOS 7SF, an 180nm, 6-layer
copper process. We received 120 chips from IBM in October of
2002. We have built a prototype Raw motherboard containing a sin-
gle Raw chip, SDRAM chips, I/O interfaces and interface FPGAs.
We have also implemented ILP and stream compilers for sequen-
tial programs and stream applications respectively. Our develop-
ment tools include a validated, cycle-accurate simulator, an RTL-
level simulator, and a logic emulator.

Our evaluation attempts to determine the extent to which Raw
succeeds in meeting its goal of serving as a more versatile, general-
purpose processor. Specifically, we evaluate the performance of Raw
on applications drawn from several classes of computation including
ILP, streams and vectors, server, and bit-level embedded computa-
tion. Our initial results are very encouraging (see Figure 3 for a quick
sampling of our results). For each of the application classes, we find
that Raw is able to perform at or close to the level of the best-in-class
machine – i.e., the best specialized machine for the given application
class. For example, for sequential applications with varying degrees
of ILP, the performance of Raw ranges from 0.5x to 9x to that of a
Pentium III (P3) processor implemented in the same technology gen-
eration as Raw. For streaming computations, Raw’s performance is
10x to 100x better than the P3, and comparable to that of specialized
stream and vector engines like Imagine [17] and VIRAM [21].

We present a metric called versatility that folds into a single scalar
number the performance of an architecture over many application
classes, and show that Raw’s is seven times better than that for the
P3. Our future work will expand the number of applications in each
class and see if this trend continues to hold.

The rest of this paper is organized as follows. Section 2 provides
an overview of the Raw architecture and its mechanisms for spe-
cialization, exploitation of parallel resources, orchestration of wires,
and management of pins. Section 3 describes the implementation of
Raw, and Section 4 provides detailed results. Section 5 introduces
our versatility metric and analyzes the results. Section 6 follows
with a detailed discussion of related work, and Section 7 concludes
the paper.

2. ARCHITECTURE OVERVIEW
This section provides a brief overview of the Raw architecture.

A more detailed discussion of the architecture is available else-
where [43, 44, 45].

Tiled Architecture The Raw architecture supports an ISA that pro-
vides a parallel interface to the gate, pin, and wiring resources of the
chip through suitable high level abstractions. As illustrated in Fig-
ure 1, the Raw processor exposes the copious gate resources of the
chip by dividing the usable silicon area into an array of 16 identical,
programmable tiles. A tile contains an 8-stage in-order single-issue
MIPS-style processing pipeline, a 4-stage single-precision pipelined

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

FPU, a 32 KB data cache, two types of communication routers –
static and dynamic, and 32KB and 64KB of software-managed in-
struction caches for the processing pipeline and static router respec-
tively. Each tile is sized so that the amount of time for a signal
to travel through a small amount of logic and across the tile is one
clock cycle. We expect that the Raw processors of the future will
have hundreds or even thousands of tiles.

On-chip Networks The tiles are interconnected by four 32-bit full-
duplex on-chip networks, consisting of over 12,500 wires (see Fig-
ure 1). Two of the networks are static (routes are specified at compile
time) and two are dynamic (routes are specified at run time). Each
tile is connected only to its four neighbors. Every wire is registered
at the input to its destination tile. This means that the longest wire
in the system is no greater than the length or width of a tile. This
property ensures high clock speeds, and the continued scalability of
the architecture.

The design of Raw’s on-chip interconnect and its interface with
the processing pipeline are its key innovative features. These on-chip
networks are exposed to the software through the Raw ISA, thereby
giving the programmer or compiler the ability to directly program
the wiring resources of the processor, and to carefully orchestrate
the transfer of data values between the computational portions of the
tiles – much like the routing in an ASIC. Effectively, the wire delay
is exposed to the user as network hops. To go from corner to corner
of the processor takes 6 hops, which corresponds to approximately
six cycles of wire delay. To minimize the latency of inter-tile scalar
data transport, which is critical for ILP, the on-chip networks are
not only register-mapped but also integrated directly into the bypass
paths of the processor pipeline.

Raw’s on-chip interconnects belong to the class of scalar operand
networks [45], which lend an interesting way of looking at modern
day processors. The register file used to be the central communi-
cation mechanism between functional units in a processor. Start-
ing with the first pipelined processors, the bypass network has be-
come largely responsible for the communication of active values,
and the register file is more of a checkpointing facility for inactive
values. The Raw networks (the static networks in particular) are in
one sense 2-D bypass networks serving as bridges between the by-
pass networks of separate tiles.

The static router in each tile contains a 64KB software-managed
instruction cache and a pair of routing crossbars. Compiler gener-
ated routing instructions are 64 bits and encode a small command
(e.g., conditional branch with/without decrement) and several routes
– one for each crossbar output. These single-cycle routing instruc-
tions are one example of Raw’s use of specialization. Because the
router program memory is cached, there is no practical architectural
limit on the number of simultaneous communication patterns that
can be supported in a computation. This feature, coupled with the
extremely low latency and low occupancy of in-order inter-tile ALU-
to-ALU operand delivery (3 cycles nearest neighbor) distinguishes
Raw from prior systolic or message passing systems [3, 12, 23].

Raw’s two dynamic networks support cache misses, interrupts,
dynamic messages, and other asynchronous events. The two net-
works use dimension-ordered routing and are structurally identical.
One network, the memory network, follows a deadlock-avoidance
strategy to avoid end-point deadlock. It is used in a restricted man-
ner by trusted clients such as data caches, DMA and I/O. The second
network, the general network, is used by untrusted clients, and relies
on a deadlock recovery strategy [23].

Raw supports context switches. On a context switch, the contents
of the processor registers and the general and static networks on a
subset of the Raw chip occupied by the process (possibly including
multiple tiles) are saved off, and the process and its network data can

be restored at any time to a new offset on the Raw grid.

Direct I/O Interfaces On the edges of the network, the network
channels are multiplexed down onto the pins of the chip to form
flexible I/O ports that can be used for DRAM accesses or external
device I/O. In order to toggle a pin, the user programs one of the
on-chip networks to route a value off the side of the array. Our 1657
pin CCGA (ceramic column-grid array) package provides us with
fourteen full-duplex, 32-bit I/O ports. Raw implementations with
fewer pins are made possible via logical channels (as is already the
case for two out of the sixteen logical ports), or simply by bonding
out only a subset of the ports.

The static and dynamics networks, the data cache of the com-
pute processors, and the external DRAMs connected to the I/O ports
comprise Raw’s memory system. The memory network is used for
cache-based memory traffic, while the static and general dynamic
networks are used for stream-based memory traffic. Memory inten-
sive domains can have up to 14 full-duplex full-bandwidth DRAM
memory banks to be placed on the 14 I/O ports of the chip. Mini-
mal embedded Raw systems may eliminate DRAM altogether – they
may use a single boot ROM so that Raw can execute out of the on-
chip memory. In addition to transferring data directly to the tiles,
off-chip devices connected to the I/O ports can route through the on-
chip networks to other devices in order to perform glueless DMA
and peer-to-peer communication.1

ISA Analogs to Physical Resources By creating first class archi-
tectural analogs to the physical chip resources, Raw attempts to min-
imize the ISA gap – that is, the gap between the resources that a
VLSI chip has available and the amount of resources that are usable
by software. Unlike conventional ISAs, Raw exposes the quantity
of all three underlying physical resources (gates, wires and pins) to
the ISA. Furthermore, it does this in a manner that is backwards-
compatible – the instruction set does not change with varying de-
grees of resources.

Physical Entity Raw ISA analog Conventional ISA Analog
Gates Tiles, new instructions New instructions

Wires, Wire delay Routes, Network Hops none
Pins I/O ports none

Table 1: How Raw converts increasing quantities of physical entities into
ISA entities

Table 1 contrasts the way the Raw ISA and conventional ISAs
expose physical resources to the programmer. Because the Raw
ISA has more direct interfaces, Raw processors can have more func-
tional units, and have more flexible and more efficient pin utilization.
High-end Raw processors will typically have more pins, because the
architecture is better at turning pin count into performance and func-
tionality. Finally, Raw processors are more predictable and have
higher frequencies because of the explicit exposure of wire delay.

This approach, exposure, makes Raw scalable. Creating subse-
quent, more powerful, generations of the processor is straightfor-
ward: we simply stamp out as many tiles and I/O ports as the silicon
die and package allow. The design has no centralized resources, no
global buses, and no structures that get larger as the tile or pin count
increases. Finally, the longest wire, the design complexity, and the
verification complexity are all independent of transistor count.

3. IMPLEMENTATION
The Raw chip is a 16-tile prototype implemented in IBM’s 180

nm 1.8V 6-layer CMOS 7SF SA-27E copper process. Although the
Raw array is only 16 mm x 16 mm, we used an 18.2 mm x 18.2

1In fact, we are building a 4x4 IP packet router using a single Raw chip and its peer-to-
peer capability.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

D
R

A
M

D
R

A
M

D
R

A
M

PCI x 2

PCI x 2

DRAM

D/A

DRAM

DRAM

DRAM

DRAM

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

Compute
Pipeline

SMEM
PC

X

DATA
CACHEPC

IMEM

D
R

A
M

D
R

A
M

D
R

A
M

PCI x 2

PCI x 2

DRAM

D/A

DRAM

DRAM

DRAM

DRAM

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

D
R

A
M

D
R

A
M

D
R

A
M

PCI x 2

PCI x 2

DRAM

D/A

DRAM

DRAM

DRAM

DRAM

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

Compute
Pipeline

SMEM
PC

X

DATA
CACHEPC

IMEM

IF RFD
A TL

M1

F P

E

U WB

r26

r27

r25

r24

Input
FIFOs
from
Static
Router

r26

r27

r25

r24

Output
FIFOs
to
Static
Router

0-cycle
“local bypass
network”

M2

TV

F4
IF RFD

A TL

M1

F P

E

U WB

r26

r27

r25

r24

Input
FIFOs
from
Static
Router

r26

r27

r25

r24

Output
FIFOs
to
Static
Router

0-cycle
“local bypass
network”

M2

TV

F4
IF RFD

A TL

M1

F P

E

U WB

r26

r27

r25

r24

Input
FIFOs
from
Static
Router

r26

r27

r25

r24

Output
FIFOs
to
Static
Router

0-cycle
“local bypass
network”

M2

TV

F4

Figure 1: The Raw microprocessor comprises 16 tiles. Each tile has a compute processor, routers, network wires, and instruction and data memories.

mm die to allow us to use the high pin-count package. The 1657 pin
ceramic column grid array package (CCGA) provides us with 1080
high speed transceiver logic (HSTL) I/O pins. Our measurements in-
dicate that the chip core averages 18.2 watts at 425MHz. We quiesce
unused functional units and memories and tri-state unused data I/O
pins. We targeted a 225 MHz worst-case frequency in our design,
which is competitive with other 180 nm lithography ASIC proces-
sors, like VIRAM, Imagine, and Tensilica’s Xtensa series. The nom-
inal running frequency is typically higher – the Raw chip core, run-
ning at room temperature, reaches 425MHz at 1.8V, and 500 MHz
at 2.2V. This compares favorably to IBM-implemented microproces-
sors in the same process; the PowerPC 405GP runs at 266-400 MHz,
while the follow-on PowerPC 440GP reaches 400-500 MHz.

We pipelined our processor aggressively and treated control paths
very conservatively in order to ensure that we would not have to
spend significant periods closing timing in the backend. Despite
these efforts, wire delay inside a tile was still large enough that we
were forced to create an infrastructure to place the cells in the timing
and congestion critical data paths. More details on the Raw imple-
mentation are available in [44].

A difficult challenge for us was to resist the temptations of making
the absolutely highest performance, highest frequency tile processor,
and instead to concentrate on the research aspects of the project, such
as the design of Raw’s scalar operand network. As one can infer
from Section 5, moving from a one-way issue compute processor
to a two-way issue compute processor would have likely improved
our performance on low-ILP applications. Our estimates indicate
that such a compute processor would have easily fit in the remaining
white space of the tile. The frequency impact of transitioning from
1-issue to 2-issue is generally held to be small.

With our collaborators at ISI-East, we have designed a prototype
motherboard (shown in Figure 2) around the Raw chip that we use
to explore a number of applications with extreme computation and
I/O requirements. A larger system, consisting of 64 Raw chips, con-
nected to form a virtual 1024 tile Raw processor, is also being fabri-
cated in conjunction with ISI-East.

4. RESULTS
This section presents measurement and experimental results of

the Raw microprocessor. We begin by explaining our experimen-
tal methodology. Then we present some basic hardware statistics.
The remainder of the section focuses on evaluating how well Raw
supports a range of programming models and application types. The
domains we examine include ILP computation, stream and embed-
ded computation, server workloads, and bit-level computation. The

performance of Raw in these individual areas are presented as com-
parison to a reference 600 MHz Pentium III.

Factor responsible Max. Speedup

Tile parallelism (Exploitation of Gates) 16x
Load/store elimination (Management of Wires) 4x
Streaming mode vs cache thrashing (Management of Wires) 15x
Streaming I/O bandwidth (Management of Pins) 60x
Increased cache/register size (Exploitation of Gates) ∼2x
Bit Manipulation Instructions (Specialization) 3x

Table 2: Sources of speedup for Raw over P3.

We note that Raw achieves greater than 16x speedup (either ver-
sus a Pentium or versus a single tile) for several applications because
of compounding or additive effects from several factors listed in Ta-
ble 2. The following is a brief discussion of these effects.

1. When all 16 tiles can be used, the speedup can be 16-fold.
2. If a, b, and c are variables in memory, then an operation of

the form c = a + b in a load-store RISC architecture will require
a minimum of 4 operations – two loads, one add, and one store.
Stream architectures such as Raw can accomplish the operation in a
single operation (for a speedup of 4x) because processor can issue
bulk data stream requests and then process data directly from the
network without going through the cache.

3. When vector lengths exceed the cache size, streaming data from
off-chip DRAM directly into the ALU achieves 7.5x the throughput
of cache accesses (each cache miss transports 8 words in 60 cycles,
while streaming can achieve one word per cycle). The streaming
effect is even more powerful with strided requests that use only part
of a full cache line. In this case, streaming throughput is 15 times
greater than going through the cache.

4. Raw has 60x the I/O bandwidth of the P3. Furthermore, Raw’s
direct programmatic interface to the pins enables efficient utilization.

5. When multiple tiles are used in a computation, the effective
number of registers and cache lines is increased, allowing a greater
working set to be accessed without penalty. We approximate the
potential speedup from this effect as 2-fold.

6. Finally, specialized bit manipulation instructions can optimize
table lookups, shifts, and logical operations. We estimate the poten-
tial speedup from this effect as 3-fold.

4.1 Experimental methodology
Validated Simulator The evaluation for this paper makes use of a
validated cycle-accurate simulator of the Raw chip. Using the val-
idated simulator as opposed to actual hardware allows us to better
normalize differences with a reference system, e.g., DRAM mem-
ory latency, and instruction cache configuration. It also allows us to

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

Figure 2: Photos of the Raw chip and Raw prototype motherboard respectively.

explore alternative motherboard configurations. We verified that the
simulator and the gate-level RTL netlist have exactly the same tim-
ing and data values for all 200,000 lines of our hand-written assem-
bly test suite, as well as for a number of C applications and randomly
generated tests. Every stall signal, register file write, SRAM write,
on-chip network wire, cache state machine transition, interrupt sig-
nal, and chip signal pin matches in value on every cycle between the
two. This gate-level RTL netlist was then shipped to IBM for man-
ufacturing. Upon receipt of the chip, we compared a subset of the
tests on the actual hardware to verify that the chip was manufactured
according to spec.

Selection of a Reference Processor In our evaluation, we realized
the importance of tying our performance numbers to an existing
commercial system. For fairness, this comparison system must be
implemented in a process that uses the same lithography generation,
180 nm. Furthermore, the reference processor needs to be measured
at a similar point in its lifecycle, i.e., as close to first silicon as possi-
ble. This is because most commercial systems are speedpath or pro-
cess tuned after first silicon is created [7]. For instance, the 180nm
P3 initial production silicon was released at 500-733 MHz and grad-
ually was tuned until it reached a final production silicon frequency
of 1 GHz. The first silicon value for the P3 is not publicly known.
However, the frequencies of first-silicon and initial production sili-
con have been known to differ by as much as 2x.

The P3 is especially ideal for comparison with Raw because it is
in common use, because its fabrication process is well documented,
and because the common-case functional unit latencies are almost
identical. The back ends of the processors share a similar level of
pipelining, which means that relative cycle-counts carry some sig-
nificance. Conventional VLSI wisdom suggests that, when normal-
ized for process, Raw’s single-ported L1 data cache should have
approximately the same area and delay as the P3’s two-ported L1
data cache of half the size. For sequential codes with working sets
that fit in the L1 caches, the cycle counts should be quite similar.
And given that the fortunes of Intel have rested (and continue to
rest, with the Pentium-M reincarnation) upon this architecture for
almost ten years, there is reason to believe that the implementation
is a good one. In fact, the P3, upon release in 4Q’99, had the highest
SpecInt95 value of any processor [13].

Itanium and Pentium 4 (P4) came as close seconds to our final

choice. Our decision to avoid them came from our need to match
the lifecycle of the reference system to Raw’s. Intel’s market pres-
sures cause it to delay the release of new processors such as P4 or
Itanium until they have been tuned enough to compete with the exist-
ing Pentium product line. Consequently, when these processors are
released, they may be closer to final-silicon than first-silicon. For ex-
ample, it is documented in the press that Itanium I was delayed for
two years between first-silicon announcement and initial production
silicon availability. Finally, the implementation complexity of Raw
is more similar to the P3 than P4 or Itanium.

Comparison of Silicon Implementations Table 3 compares the
two chips and their fabrication processes, IBM’s CMOS 7SF [27,
37] and Intel’s P858 [51]. CMOS 7SF has denser SRAM cells and
less interconnect resistivity, due to copper metalization. P858, on
the other hand, attempts to compensate for aluminum metalization
by using a lower-k dielectric, SiOF, and by carefully varying the
aspect ratios of the wires.

Parameter Raw (IBM ASIC) P3 (Intel)

Lithography Generation 180 nm 180 nm
Process Name CMOS 7SF P858

(SA-27E)
Metal Layers Cu 6 Al 6
Dielectric Material SiO2 SiOF
Oxide Thickness (Tox) 3.5 nm 3.0 nm
SRAM Cell Size 4.8 µm2 5.6 µm2

Dielectric k 4.1 3.55
Ring Oscillator Stage (FO1) 23 ps 11 ps

Dynamic Logic, Custom Macros no yes
(SRAMs, RFs)
Speedpath Tuning since First Silicon no yes

Initial Frequency 425 MHz 500-733 MHz
Die Area2 331 mm2 106 mm2

Signal Pins ∼ 1100 ∼ 190
Vdd used 1.8 V 1.65 V
Nominal Process Vdd 1.8 V 1.5 V

Table 3: Comparison of Implementation Parameters for Raw and P3-
Coppermine.

The Ring Oscillator metric measures the delay of a fanout-of-1
(FO1) inverter. It has been suggested that an approximate FO4 de-
lay can be found by multiplying the FO1 delay by 3 [15]. Thus,
P858 gates appear to be significantly (2.1x) faster than the CMOS

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

7SF gates. This is to be expected, as IBM terms CMOS 7SF a
“value” process. IBM’s non-ASIC, high-performance, 180 nm pro-
cess, CMOS 8S, is competitive with P858 [8], and has ring oscilla-
tor delays of 11 ps and better. Furthermore, production 180 nm P3’s
have their voltages set 10% higher than the nominal process voltage,
which typically improves frequency by 10% or more.

A recent book, [7], lists a number of limitations that ASIC proces-
sor implementations face versus full-custom implementations. We
mention some applicable ones here. First, because the ASIC flow
predetermines aspects of a chip, basic overheads are relatively high
in comparison to full-custom designs. Two of Raw’s largest over-
heads were the mandatory scan flip-flops (18%), and clock skew
and jitter (13%). Second, ASIC flows tend to produce logic that
is significantly less dense than corresponding custom flows. Third,
ASIC flows prevent use of custom or dynamic logic, except for a
limited menu (up to 2 read ports and 2 write ports) of fixed pipeline-
depth register files and SRAMs, which are machine generated. A
40-80% improvement in frequency often is attributed to the use of
dynamic logic. Process and speedpath tuning account for 35%. Fi-
nally, speed-binning yields approximately 20%.

We compensate only for the last two factors in this paper. We
selected a 600 MHz P3 as the reference system. The 600 MHz P3,
released prior to process tuning, and after limited speedpath tuning,
is solidly in the middle of the P3 initial production frequency range,
presumably representing an average-speedbin part.

We believe that a Raw implementation with the same engineering
effort and process technology as the Intel P3 would be smaller and
significantly faster. However, we make no attempt to normalize for
these factors.

Normalization Details With the selection of a reference CPU im-
plementation comes a selection of an enclosing computer. We used
a pair of 600 MHz Dell Precision 410’s to run our reference bench-
marks. We outfitted these machines with identical 100 MHz 2-2-
2 PC100 256 MB DRAMs, and wrote several microbenchmarks to
verify that the memory system timings matched.

To compare the Raw and Dell systems more equally, we used the
Raw simulator’s extension language to implement a cycle-matched
PC100 DRAM model and a chipset4. This model has the same wall-
clock latency and bandwidth as the Dell 410. However, since Raw
runs at a slower frequency than the P3, the latency, measured in cy-
cles, is less. We use the term RawPC to describe a simulation which
uses 8 PC100 DRAMs, occupying 4 ports on the left hand side of
the chip, and 4 on the right hand side.

Because Raw is also designed for streaming applications, we also
wanted to measure applications that use the full pin bandwidth of
the chip. In this case, we use a simulation of CL2 PC 3500 DDR
DRAM, which provides enough bandwidth to saturate both direc-
tions of a Raw port. In this case, we use 16 PC 3500 DRAMs, at-
tached to all 16 logical ports on the chip, in conjunction with a mem-
ory controller, implemented in the chipset, that supports a number of
stream requests. A Raw tile can send a message over the general dy-
namic network to the chipset to initiate large bulk transfers from the
DRAMs into and out of the static network. Simple interleaving and
striding is supported, subject to the underlying access and timing
constraints of the DRAM. We call this configuration RawStreams.

The placement of a DRAM on a Raw port does not exclude the
use of other devices on that port – the chipsets have a simple de-

2Note that despite the area penalty for an ASIC implementation, it is almost certain
that the Raw processor is a bigger design than the P3. Our evaluation does not aim to
make a cost-normalized comparison, but rather seeks to demonstrate the scalability of
our approach for future microprocessor designs.
4The support chips typically used to interface a processor to its memory system and I/O
peripherals.

Latency Throughput
Operation 1 Raw Tile P3 Raw P3

ALU 1 1 1 1
Load (hit) 3 3 1 1
Store (hit) - - 1 1
FP Add 4 3 1 1
FP Mul 4 5 1 1/2
Mul 2 4 1 1

Div 42 26 1 1
FP Div 10 18 1/10 1/18
SSE FP 4-Add - 4 - 1/2
SSE FP 4-Mul - 5 - 1/2
SSE FP 4-Div - 36 - 1/36

Table 4: Functional unit timings. Commonly executed instructions ap-
pear first. FP operations are single precision.

1 Raw Tile P3

CPU Frequency 425 MHz 600 MHz
Sustained Issue Width 1 in-order 3 out-of-order
Mispredict Penalty 3 10-15
DRAM Freq (RawPC) 100 MHz 100 MHz
DRAM Freq (RawStreams) 2 x 213 MHz -
DRAM Access Width 8 bytes 8 bytes
L1 D cache size 32K 16K
L1 D cache ports 1 2
L1 I cache size 32K 16K
L1 miss latency 54 cycles 7 cycles
L1 fill width 4 bytes 32 bytes
L1 / L2 line sizes 32 bytes 32 bytes
L1 associativities 2-way 4-way
L2 size - 256K
L2 associativity - 8-way
L2 miss latency - 79 cycles
L2 fill width - 8 bytes

Table 5: Memory system data.

multiplexing mechanism that allows multiple devices to connect to
a single port.

Except where otherwise noted, we used gcc 3.3 -O3 to compile C
and Fortran code for both Raw5 and the P36. For programs that do C
or Fortran stdio calls, we use newlib 1.9.0 for both Raw and the P3.
Finally, to eliminate the impact of disparate file and operating sys-
tems, the results of I/O system calls for the Spec benchmarks were
captured and embedded into the binaries as static data using [42].

We performed one final normalization. Our preliminary Raw
software-managed instruction-caching system has not been opti-
mized, which made it difficult to compare the two systems. To en-
able comparisons with the P3, we augmented the cycle-accurate sim-
ulator so that it employs conventional 2-way associative hardware
instruction caching. These instruction caches are modelled cycle-
by-cycle in the same manner as the rest of the hardware. Like the
data caches, they service misses over the memory dynamic network.
Resource contention between the caches is modeled accordingly.

4.2 Basic data
Tables 4 and 5 show functional unit timings and memory system

characteristics for both systems, respectively. Table 6 shows Raw’s
measured power consumption [19]. Table 7 lists a breakdown of the
end-to-end message latency on Raw’s scalar operand network. The
low 3-cycle inter-tile ALU-to-ALU latency and zero cycle send and
receive occupancies are critical for obtaining good ILP performance.

4.3 ILP Computation
This section examines how well Raw is able to support conven-

tional sequential applications. Typically, the only form of paral-
lelism available in these applications is ILP-level parallelism. For

5The Raw gcc backend, based on the MIPS backend, targets a single tile’s compute and
network resources.
6For P3, we added -march=pentium3 -mfpmath=sse

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

Core Pins

Idle - Full Chip 9.6 W 0.02 W
Average - Per Active Tile 0.54 W -
Average - Per Active Port - 0.2 W
Average - Full Chip 18.2 W 2.8 W

Table 6: Raw power consumption at 425 MHz, 25o C

Latency

Sending Processor Occupancy 0
Latency to Network Input 1
Latency per hop 1
Latency from Network Output to ALU 1
Receiving Processor Occupancy 0

Table 7: Breakdown of the end-to-end latency (in cycles) for a one-word
message on Raw’s static network.

this evaluation, we select a range of benchmarks that encompasses a
wide spectrum of program types and degree of ILP.

Much like a VLIW architecture, Raw is designed to rely on the
compiler to find and exploit ILP. We have developed Rawcc [5, 24,
25] to explore these compilation issues. Rawcc takes sequential C
or Fortran programs and orchestrates them across the Raw tiles in
two steps. First, Rawcc distributes the data and code across the tiles
to attempt to balance the tradeoff between locality and parallelism.
Then, it schedules the computation and communication to maximize
parallelism and minimize communication stalls.

Rawcc was developed as a prototyping environment for exploring
compilation techniques for Raw. As such, unmodified Spec applica-
tions stretch its robustness. We are working on improving the robust-
ness of Rawcc. Additionally, we have made progress on a follow-on
parallelizing compiler which has more focus on robustness and code
quality. The speedups attained in Table 8 shows the potential of au-
tomatic parallelization and ILP exploitation on Raw. Of the bench-
marks compiled by Rawcc, Raw is able to outperform the P3 for all
the scientific benchmarks and several irregular applications.

Raw Cycles Speedup vs P3
Benchmark Source Tiles on Raw Cycles Time

Dense-Matrix Scientific Applications
Swim Spec95 16 14.5M 4.0 2.9
Tomcatv Nasa7:Spec92 16 2.05M 1.9 1.3
Btrix Nasa7:Spec92 16 516K 6.1 4.3
Cholesky Nasa7:Spec92 16 3.09M 2.4 1.7
Mxm Nasa7:Spec92 16 247K 2.0 1.4
Vpenta Nasa7:Spec92 16 272K 9.1 6.4
Jacobi Raw bench. suite 16 40.6K 6.9 4.9
Life Raw bench. suite 16 332K 4.1 2.9

Sparse-Matrix/Integer/Irregular Applications
SHA Perl Oasis 16 768K 1.8 1.3
AES Decode FIPS-197 16 292K 1.3 0.96
Fpppp-kernel Nasa7:Spec92 16 169K 4.8 3.4
Unstructured CHAOS 16 5.81M 1.4 1.0

Table 8: Performance of sequential programs on Raw and on a P3.

Table 9 shows the speedups achieved by Rawcc as the number
of tiles varies from two to 16. The speedups are compared to per-
formance of a single Raw tile. Overall, the source of speedups
comes primarily from tile parallelism (see Table 2), but several of
the dense matrix benchmarks benefit from increased cache capac-
ity as well (which explains the super-linear speedups). In addition,
Fpppp-kernel benefits from increased register capacity, which leads
to fewer spills.

For completeness, we also compiled a selection of the Spec2000
benchmarks with gcc for a single tile, and ran them using the
MinneSPEC’s [20] LgRed data sets to reduce the length of simu-
lations. The results, shown in Table 10, represent a lower bound for
the performance of those codes on Raw, as they only use 1/16 of
the resources on the Raw chip. The numbers are quite surprising;
on average; the simple in-order Raw tile with no L2 cache is only

Number of tiles
Benchmark 1 2 4 8 16

Dense-Matrix Scientific Applications
Swim 1.0 1.1 2.4 4.7 9.0
Tomcatv 1.0 1.3 3.0 5.3 8.2
Btrix 1.0 1.7 5.5 15.1 33.4
Cholesky 1.0 1.8 4.8 9.0 10.3
Mxm 1.0 1.4 4.6 6.6 8.3
Vpenta 1.0 2.1 7.6 20.8 41.8
Jacobi 1.0 2.6 6.1 13.2 22.6
Life 1.0 1.0 2.4 5.9 12.6

Sparse-Matrix/Integer/Irregular Applications
SHA 1.0 1.5 1.2 1.6 2.1
AES Decode 1.0 1.5 2.5 3.2 3.4
Fpppp-kernel 1.0 0.9 1.8 3.7 6.9
Unstructured 1.0 1.8 3.2 3.5 3.1

Table 9: Speedup of the ILP benchmarks relative to single-tile Raw.
1.4x slower by cycles and 2x slower by time than the full P3. This
suggests that in the event that the parallelism in these applications is
too small to be exploited across Raw tiles, a simple two-way Raw
compute processor might be sufficient to make the performance dif-
ference easily be hidden by other aspects of the system.

Raw Cycles Speedup vs P3
Benchmark Source Tiles on Raw Cycles Time

172.mgrid SPECfp 1 .240B 0.97 0.69
173.applu SPECfp 1 .324B 0.92 0.65
177.mesa SPECfp 1 2.40B 0.74 0.53
183.equake SPECfp 1 .866B 0.97 0.69
188.ammp SPECfp 1 7.16B 0.65 0.46
301.apsi SPECfp 1 1.05B 0.55 0.39

175.vpr SPECint 1 2.52B 0.69 0.49
181.mcf SPECint 1 4.31B 0.46 0.33
197.parser SPECint 1 6.23B 0.68 0.48
256.bzip2 SPECint 1 3.10B 0.66 0.47
300.twolf SPECint 1 1.96B 0.57 0.41

Table 10: Performance of SPEC2000 programs on one tile on Raw.

4.4 Stream computation
We present performance of stream computations for Raw. Stream

computations arise naturally out of real-time I/O applications as well
as from embedded applications. The data sets for these applications
are often large and may even be a continuous stream in real-time,
which makes them unsuitable for traditional cache based memory
systems. Raw provides a more natural support for stream based com-
putation by allowing data to be fetched efficiently through a register
mapped, software orchestrated network.

We present two sets of results. First we show the performance
of programs written in StreamIt, a high level stream language, and
automatically compiled to Raw. Then, we show the performance of
some hand written applications.

4.4.1 StreamIt
StreamIt is a high-level, architecture-independent language for

high-performance streaming applications. StreamIt contains lan-
guage constructs that improve programmer productivity for stream-
ing, including hierarchical structured streams, graph parameteriza-
tion, and circular buffer management; these constructs also expose
information to the compiler and enable novel optimizations [47]. We
have developed a Raw backend for the StreamIt compiler, which in-
cludes fully automatic load balancing, graph layout, communication
scheduling, and routing [11].

We evaluate the performance of RawPC on several StreamIt
benchmarks, which represent large and pervasive DSP applications.
Table 11 summarizes the performance of 16 Raw tiles vs. a P3. For
both architectures, we use StreamIt versions of the benchmarks; we
do not compare to hand-coded C on the P3 because StreamIt per-
forms at least 1-2X better for 4 of the 6 applications (this is due to

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

aggressive unrolling and constant propagation in the StreamIt com-
piler). The comparison reflects two distinct influences: 1) the scaling
of Raw performance as the number of tiles increases, and 2) the per-
formance of a Raw tile vs. a P3 for the same StreamIt code. To dis-
tinguish between these influences, Table 12 shows detailed speedups
relative to StreamIt code running on a 1-tile Raw configuration.

Cycles Per Output Speedup vs P3
Benchmark on Raw Cycles Time

Beamformer 2074.5 7.3 5.2
Bitonic Sort 11.6 4.9 3.5
FFT 16.4 6.7 4.8
Filterbank 305.6 15.4 10.9
FIR 51.0 11.6 8.2
FMRadio 2614.0 9.0 6.4

Table 11: StreamIt performance results.

StreamIt StreamIt on n Raw tiles
Benchmark on P3 1 2 4 8 16

Beamformer 3.0 1.0 4.1 4.5 5.2 21.8
Bitonic Sort 1.3 1.0 1.9 3.4 4.7 6.3
FFT 1.1 1.0 1.6 3.5 4.8 7.3
Filterbank 1.5 1.0 3.3 3.3 11.0 23.4
FIR 2.6 1.0 2.3 5.5 12.9 30.1
FMRadio 1.2 1.0 1.0 1.2 4.0 10.9

Table 12: Speedup (in cycles) of StreamIt benchmarks relative to a 1-tile
Raw configuration. From left, the columns indicate the StreamIt version
on a P3, and on Raw configurations with one to 16 tiles.

The primary result illustrated by Table 12 is that StreamIt applica-
tions scale effectively for increasing sizes of the Raw configuration.
For FIR, FFT, and Bitonic, the scaling is approximately linear across
all tile sizes (FIR is actually super-linear due to decreasing regis-
ter pressure in larger configurations). For Beamformer, Filterbank,
and FMRadio, the scaling is slightly inhibited for small configura-
tions. This is because 1) these applications are larger, and IMEM
constraints prevent an unrolling optimization for small tile sizes, and
2) they have more data parallelism, yielding speedups for large con-
figurations but inhibiting small configurations due to a constant con-
trol overhead.

The second influence is the performance of a P3 vs. a single Raw
tile on the same StreamIt code, as illustrated by the second column
in Table 12. In most cases, performance is comparable. The P3
performs better in two cases because it can exploit ILP: Beamformer
has independent real/imaginary updates in the inner loop, and FIR is
a fully unrolled multiply-accumulate operation. In other cases, ILP
is obscured by circular buffer accesses and control dependences.

In all, StreamIt applications benefit from Raw’s exploitation of
parallel resources and management of wires (see Table 19 for sum-
mary). The abundant parallelism and regular communication pat-
terns in stream programs are an ideal match for the parallelism and
tightly orchestrated communication on Raw. As stream programs of-
ten require high bandwidth, register-mapped communication serves
to avoid costly memory accesses. Also, autonomous streaming com-
ponents can manage their local state in Raw’s distributed data caches
and register banks, thereby improving locality. These aspects are key
to the scalability demonstrated in the StreamIt benchmarks.

4.4.2 Hand written stream applications
ISI East, the MIT Oxygen Team, and MIT CAG have hand-written

a wide range of stream based applications to take advantage of Raw
as an embedded processor. This section presents the results. These
include a set of linear algebra routines implemented as Stream Algo-
rithms, the STREAM benchmark, and several other embedded appli-
cations including a real-time 1020-node acoustic beamformer. The
benchmarks are typically written in C and compiled with gcc, with

inline assembly for a subset of inner loops. Some of the simpler
benchmarks like the STREAM benchmark and the FIR were small
enough that coding entirely in assembly was most expedient.

Stream Algorithms Table 13 presents the performance of a set of
linear algebra algorithms on RawPC versus the P3.

MFlops Speedup vs P3
Benchmark Problem Size on Raw Cycles Time

Matrix Multiplication 256 x 256 6310 8.6 6.3
LU factorization 256 x 256 4300 12.9 9.2
Triangular solver 256 x 256 4910 12.2 8.6
QR factorization 256 x 256 5170 18.0 12.8
Convolution 256 x 16 4610 9.1 6.5

Table 13: Performance of linear algebra routines.

The Raw implementations are coded as Stream Algorithms [16],
which emphasize computational efficiency in space and time and
are designed specifically to take advantage of tiled microarchitec-
tures like Raw. They have three key features. First, stream algo-
rithms operate directly on data from the interconnect and achieve
an asymptotically optimal 100 % compute efficiency for large num-
bers of tiles. Second, stream algorithms use no more than a small,
bounded amount of storage on each processing element. Third,
data are streamed through the compute fabric from and to periph-
eral memories.

With the exception of Convolution, we compare against the P3
running single precision Lapack (Linear Algebra Package). We use
clapack version 3.0 [2] and a tuned BLAS implementation, AT-
LAS [50], version 3.4.2. We disassembled the ATLAS library to
verify that it uses P3 SSE extensions appropriately to achieve high
performance. Since Lapack does not provide a convolution, we com-
pare against the Intel Integrated Performance Primitives (IPP).

As can be seen in Table 13, Raw performs significantly better
than the P3 on these applications even with optimized P3 SSE code.
Raw’s better performance is due to load/store elimination (see Ta-
ble 2), and the use of parallel resources. Stream Algorithms oper-
ate directly on values from the network and avoid loads and stores,
thereby achieving higher utilization of parallel resources than the
blocked code on the P3.

STREAM benchmark The STREAM benchmark was created by
John McCalpin to measure sustainable memory bandwidth and the
corresponding computation rate for vector kernels [30]. Its per-
formance has been documented on thousands of machines, ranging
from PCs and desktops to MPPs and other supercomputers.

Bandwidth (GB/s)
Problem Size P3 Raw NEC SX-7 Raw/P3

Copy .567 47.6 35.1 84
Scale .514 47.3 34.8 92
Add .645 35.6 35.3 55

Scale & Add .616 35.5 35.3 59

Table 14: Performance (by time) of STREAM benchmark.

We hand-coded an implementation of STREAM on RawStreams.
We also tweaked the P3 version to use single precision SSE float-
ing point, improving its performance. The Raw implementation em-
ploys 14 tiles and streams data between 14 processors and 14 mem-
ory ports through the static network. Table 14 displays the results.
Raw is 55x-92x better than the P3. The table also includes the per-
formance of STREAM on NEC SX-7 Supercomputer, which has the
highest reported STREAM performance of any single-chip proces-
sor. Note that Raw surpasses that performance. This extreme single-
chip performance is achieved by taking advantage of three Raw ar-
chitectural features: its ample pin bandwidth, the ability to precisely
route data values in and out of DRAMs with minimal overhead, and
a careful match between floating point and DRAM bandwidth.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

Other stream-based applications Table 15 presents the perfor-
mance of some hand written stream applications on Raw. We are de-
veloping a real time 1020 microphone Acoustic Beamformer which
will use the Raw system for processing. On this application, Raw
runs 16 instantiations of the code and the microphones are striped in
a data parallel manner across the array. Raw’s software exposed I/O
is also much more efficient than getting the stream data from DRAM
in the case of the P3. Inputting and outputting data from DRAM is
the best case for the P3. The P3 results would be much worse in an
actual system where the data would come over a PCI bus. For the
FIR, we compared to the Intel IPP. Results for Corner Turn, Beam
Steering, and CSLC are discussed in the previously published [41].

Machine Cycles Speedup vs P3
Benchmark Config. on Raw Cycles Time

Acoustic Beamforming RawStreams 7.83M 9.7 6.9
512-pt Radix-2 FFT RawPC 331K 4.6 3.3
16-tap FIR RawStreams 548K 10.9 7.7
CSLC RawPC 4.11M 17.0 12.0
Beam Steering RawStreams 943K 65 46
Corner Turn RawStreams 147K 245 174

Table 15: Performance of hand written stream applications.

4.5 Server
To measure the performance of Raw on server-like workloads, we

conduct the following experiment on RawPC to obtain SpecRate-
like metrics. For each of a subset of Spec 2000 applications, we
execute an independent copy of it on each of the 16 tiles, and we
measure the overall throughput of that workload relative to a single
run on the P3.

Table 16 presents the results. Note that the speedup of Raw versus
P3 is equivalent to the throughput of Raw relative to P3’s throughput.
As anticipated, RawPC outperforms the P3 by a large margin, with
an average throughput advantage of 10.8x (by cycles) and 7.6x (by
time). The key Raw feature that enables this performance is the high
pin bandwidth available to off-chip memory. RawPC contains eight
separate memory ports to DRAM. This means that even when all 16
tiles are running applications, each memory port and DRAM is only
shared among two applications.

Cycles Speedup vs P3
Benchmark on Raw Cycles Time Efficiency

172.mgrid .240B 15.0 10.6 96%
173.applu .324B 14.0 9.9 96%
177.mesa 2.40B 11.8 8.4 99%
183.equake .866B 15.1 10.7 97%
188.ammp 7.16B 9.1 6.5 87%
301.apsi 1.05B 8.5 6.0 96%

175.vpr 2.52B 10.9 7.7 98%
181.mcf 4.31B 5.5 3.9 74%
197.parser 6.23B 10.1 7.2 92%
256.bzip2 3.10B 10.0 7.1 94%
300.twolf 1.96B 8.6 6.1 94%

Table 16: Performance of Raw on server workloads relative to the P3.

Table 16 shows the efficiency of RawPC’s memory system for
each server workload. Efficiency is the ratio between the actual
throughput and the ideal 16x speedup attainable on 16 tiles. Less
than the ideal throughput is achieved because of interference among
memory requests originating from tiles that share the same DRAM
banks and ports. We see that the efficiency is high across all the
workloads, with an average of 93%.

4.6 Bit-Level Computation
We measure the performance of RawStreams on two bit-level

computations [49]. Table 17 presents the results for the P3, Raw,
FPGA, and ASIC implementations. We compare with a Xilinx

Speedup vs P3
Problem Cycles Raw FPGA ASIC

Size on Raw Cycles Time Time Time

802.11a 1024 bits 1048 11.0 7.8 6.8 24
ConvEnc 16408 bits 16408 18.0 12.7 11 38

65536 bits 65560 32.8 23.2 20 68
8b/10b 1024 bytes 1054 8.2 5.8 3.9 12
Encoder 16408 bytes 16444 11.8 8.3 5.4 17

65536 bytes 65695 19.9 14.1 9.1 29

Table 17: Performance of two bit-level applications: 802.11a Convolu-
tional Encoder and 8b/10b Encoder. The hand coded Raw implementa-
tions are compared to reference sequential implementations on the P3.
Virtex-II 3000-5 FPGA, which is built on the same process gener-
ation as the Raw chip, and for the ASIC implementations we synthe-
size to the IBM SA-27E process that the Raw chip is implemented in.
For each benchmark, we present three problem sizes: 1024, 16384,
and 65536 samples. These problem sizes are selected to fit in the
L1, L2, and miss in the cache on the P3, respectively. We use a
randomized input sequence in all cases.

On these two applications, Raw is able to excel by exploiting fine-
grain pipeline parallelism. To do this, the computations were spa-
tially mapped across multiple tiles. Both applications benefited by
more than 2x from Raw’s specialized bit-level manipulation instruc-
tions, which reduce the latency of critical feedback loops. Another
factor in Raw’s high performance on these applications is Raw’s ex-
posed streaming I/O. This I/O model is in sharp contrast to having
to move data though the cache hierarchy on a P3.

We also present in Table 18 results for the operation on 16 parallel
input streams. This is to simulate a possible workload that a base-
station communications chip may need to complete by encoding 16
simultaneous connections. For this throughput test, a more area ef-
ficient implementation was used on Raw. This implementation has
lower peak performance, but by instantiating 16 instances, a higher
throughput per area is achieved.

Cycles Speedup vs P3
Benchmark Problem Size on Raw Cycles Time

802.11a 16*64 bits 259 45 32
ConvEnc 16*1024 bits 4138 71 51

16*4096 bits 16549 130 92
8b/10b 16*64 bytes 257 34 24
Encoder 16*1024 bytes 4097 47 33

16*4096 bytes 16385 80 56

Table 18: Performance of two bit-level applications for 16 streams:
802.11a Convolutional Encoder and 8b/10b Encoder. This test simulates
a possible workload for a base-station which processes multiple commu-
nication streams.

5. ANALYSIS
Sections 4.3 through 4.6 presented performance results for Raw

for several application classes and showed that Raw’s performance
was within a factor of 2x of the P3 for low-ILP applications, 2x-
9x better than the P3 for high-ILP applications, and 10-100x better
for stream or embedded computations. Table 19 summarizes the
primary features that are responsible for performance improvements
on Raw.

In this section, we compare the performance of Raw to other ma-
chines that have been designed specifically with streams or embed-
ded computation in mind. We also attempt to explore quantitatively
the degree to which Raw succeeds in being a more versatile general-
purpose processor. To do so, we selected a representative subset of
applications from each of our computational classes, and obtained
performance results for Raw, P3 and machines especially suited for
each of those applications. We note that these results are exploratory
in nature and not meant to be taken as any sort of proof of Raw’s
versatility, rather as an early indication of the possibilities.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

 Best-in-class envelope
� Raw
� P3
� NEC SX-7
� VIRAM
� Imagine
� 16-P3 server farm
� FPGA
� ASIC

| ||0.1

|
|

|
||

||
||1.0

|
|

|
||

||
||10.0

|
|

|
||

||
||100.0

|

 S
p

ee
d

u
p

 v
er

su
s

P
3

30
0.t

wolf

19
7.p

ar
se

r

17
5.v

pr
SHA

Unst
ru

ct

Choles
ky

Mxm
Swim Life

Btri
x

Vpen
ta FIR

Bito
nic

Bea
m

fo
rm

FMRad
io

STRM.sc
ale

Corn
er

tu
rn

Bea
m

st
ee

r

CSLC
FFT

18
3.e

quak
e

17
7.m

es
a

30
1.a

psi

18
1.m

cf

25
6.b

zip
2

80
2.1

1a
.64

k

8b
/10

b.64
k

IL
P

IL
P

IL
P

IL
P

IL
P

IL
P

IL
P

IL
P

IL
P

IL
P

IL
P

Stre
am

Stre
am

Stre
am

Stre
am

Stre
am

Stre
am

Stre
am

Stre
am

Stre
am

Ser
ve

r

Ser
ve

r

Ser
ve

r

Ser
ve

r

Ser
ve

r

Bit-
lev

el

Bit-
lev

el

� � �

�
�

�
�

� �
�

�
�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

� �

�

�

�

�
�

�

�

� � � � � �
�

�

�

�

Figure 3: Performance of various architectures over several applications classes. Each point in the graph represents the speedup of an architecture
over the P3 for a given application. The best-in-class envelope connects the best speedups for each application. The dashed line connects the speedups
of Raw for all the applications. A versatile architecture has speedups close to the best-in-class envelope for all application classes. Imagine and VIRAM
results are obtained from [41] and [34]. Bit-level results for FPGA and ASIC implementations are obtained from [49].

Figure 3 summarizes these results. We can make several obser-
vations from the figure. First, it is easy to see that the P3 does well
relative to Raw for applications with low degrees of ILP, while the
opposite is true for applications with higher degrees of ILP, such as
Vpenta. For streams and vectors, the performance of Raw is com-
parable to that of stream and vector architectures like VIRAM and
Imagine. All three outperform the P3 by factors of 10x to 100x.
Raw, using the RawStreams configuration, beats the highest reported
single-chip STREAM memory bandwidth champion, the NEC SX-
7 Supercomputer, and is 55x-92x better than the P3. Essential to
Raw’s performance on this benchmark is the ample pin bandwidth,
the ability to precisely route data values in and out of DRAM with
minimal overhead, and a careful match between floating point and
DRAM bandwidth.

Category Benchmarks S R W P

ILP Swim, Tomcatv, Btrix, Cholesky, Vpenta,
Mxm, Life, Jacobi, Fpppp-kernel, SHA, AES
Encode, Unstructured, 172.mgrid, 173.applu,
177.mesa, 183.equake, 188.ammp, 301.apsi,
175.vpr, 181.mcf, 197.parser, 256.bzip2,
300.twolf

X X X

Stream:StreamIt Beamformer, Bitonic Sort, FFT, Filterbank,
FIR, FMRadio

X X X

Stream:Stream Algo. Mxm, LU fact., Triang. solver, QR fact., Conv. X X X
Stream:STREAM Copy, Scale, Add, Scale & Add X X
Stream:Other Acoustic Beamforming, FIR, FFT,

Beam Steering
X X X

Corner Turn X X
CSLC X X

Server 172.mgrid, 173.applu, 177.mesa,
183.equake, 188.ammp, 301.apsi, 175.vpr,
181.mcf,
197.parser, 256.bzip2, 300.twolf

X X

Bit-Level 802.11a ConvEnc, 8b/10b Encoder X X X

Table 19: Raw feature utilization table. S = Specialization. R = Exploit-
ing Parallel Resources. W = Management of Wire Delays. P = Manage-
ment of Pins.

We chose a server farm with 16 P3s as our best-in-class server
system. Notice that a single-chip Raw system comes within a factor
of three of this server farm for most applications. (Note that this
is only a pure performance comparison, and we have not attempted
to normalize for cost.) We chose FPGAs and ASICs as the best in
class for our embedded bit-level applications. Raw’s performance
is comparable to that of an FPGA for these applications, and is a
factor of 2x to 3x off from an ASIC. (Again, note that we are only
comparing performance – ASICs use significantly lower area and

power than Raw [49].) Raw performs well on these applications
for the same reasons that FPGAs and ASICs do – namely, a careful
orchestration of the wiring or communication patterns.

Thus far, our analysis of Raw’s flexibility has been qualitative.
Given the recent interest in flexible, versatile or polymorphic archi-
tectures such as Tarantula [9], Scale [22], Grid [33], and SmartMem-
ories [28], which attempt to perform well over a wider range of ap-
plications than extant general purpose processors, it is intriguing to
search for a metric that can capture the notion of versatility. We
would like to offer up a candidate and use it to evaluate the versatil-
ity of Raw quantitatively. In a manner similar to the computation of
SpecRates, we define the versatility of a machine M as the geometric
mean over all applications of the ratio of machine M’s speedup for
a given application relative to the speedup of the best machine for
that application.7

For the application set graphed in Figure 3, Raw’s versatility is
0.72, while that of the P3 is 0.14. The P3’s relatively poor perfor-
mance on stream benchmarks hurts its versatility. Although Raw’s
0.72 number is relatively good, even our small sample of appli-
cations highlights two clear areas which merit additional work in
the design of polymorphic processors. One is for embedded bit-
level designs, where ASICs perform 2x-3x better than Raw for our
small application set. Certainly there are countless other applica-
tions for which ASICs outstrip Raw by much higher factors. Perhaps
the addition of small amounts of bit-level programmable logic à la
PipeRench [10] or Garp [14] can bridge the gap.

Computation with low levels of ILP is another area for further
research. We will refer to Figure 4 to discuss this in more detail.
The figure plots the speedups (in cycles) of Raw and a P3 with re-
spect to execution on a single Raw tile. The applications are listed
on the x-axis and sorted roughly in the order of increasing ILP. The
figure indicates that Raw is able to convert ILP into performance
when ILP exists in reasonable quantities. This indicates the scala-

7Since we are taking ratios, the individual machine speedups can be computed rela-
tive to any one machine, since the effect of that machine cancels out. Accordingly, the
speedups in Figure 3 are expressed relative to the P3 without loss of generality. Further,
like SpecRates’ rather arbitrary choice of the Sun Ultra5 as a normalizing machine, the
notion of versatility can be generalized to future machines by choosing equally arbi-
trarily the best-in-class machines graphed in Figure 3 as our reference set for all time.
Thus, since the best-in-class machines are fixed, the versatilities of future machines can
become greater than 1.0.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

bility of Raw’s scalar operand network. The performance of Raw
is lower than the P3 by about 33 percent for applications with low
degrees of ILP for several reasons. First, the three leftmost appli-
cations in Figure 4 were run on a single tile. We hope to continue
tuning our compiler infrastructure and do better on some of these
applications. Second, a near-term commercial implementation of a
Raw-like processor might likely use a two-way superscalar in place
of our single-issue processor which would be able to match the P3
for integer applications with low ILP. (See [31] for details on grain-
size tradeoffs in Raw processors).

� Raw 1 tile
� Entire Raw chip
� P3

| | | | | | | | | | | | | | |||
||

|1.0

|
|

|
|

||
||

|10.0

|
|

|

 S
p

ee
d

u
p

 v
s.

 1
 R

aw
 t

ile

30
0.t

wolf

19
7.p

ar
se

r

17
5.v

pr
SHA

Unst
ru

ct

Choles
ky

Mxm
Swim Life

Btri
x

Vpen
ta FIR

Bito
nic

Bea
m

fo
rm

� � � � � � � � � � � � � �� � �

�

�

�
� �

�

�
�

�

�

�

�
� �

�

�

� �

�

�

�
�

�

�

�

Figure 4: Speedup (in cycles) achieved by Raw and the P3 over executing
on a single Raw tile.

6. RELATED WORK
Raw distinguishes itself from others by being a modeless archi-

tecture and supporting all forms of parallelism, including ILP, DLP,
TLP and streams. Several projects have attempted to exploit spe-
cific forms of parallelism. These include systolic (iWarp [12]),
vector (VIRAM [21]), stream (Imagine [17]), shared-memory
(DASH [26]), and message passing (J machine [35]). These ma-
chines, however, were not designed for ILP. In contrast, Raw was
designed to exploit ILP effectively in addition to these other forms
of parallelism. ILP presents a hard challenge for these machines
because it requires that the architecture be able to transport scalar
operands between logic units with very low latency, even when there
are a large number of highly irregular communication patterns. A
recent paper, [45], employs a 5-tuple to characterize the cost of
sending operands between function units in a number of architec-
tures. Table 7 lists the components of this 5-tuple in order. Qualita-
tively, larger 5-tuple values represent proportionally more expensive
operand transport costs. The large values in the network 5-tuples for
iWarp < 1, 6, 5, 0, 1 >, shared memory < 1, 18, 2, 14, 1 >, and
message passing < 3, 7, 1, 1, 12 >, compared to the low numbers
in the 5-tuples of machines that can exploit ILP, e.g., superscalar
< 0, 0, 0, 0, 0 >, Raw < 0, 1, 1, 1, 0 >, Grid < 0, 0, 1/2, 0, 0 >,
and ILDP < 0, 1, 0, 1, 0 > quantitatively demonstrate the differ-
ence. The low 5-tuple of Raw’s scalar operand network compared
to that of iWarp enables Raw to exploit diverse forms of parallelism,
and is a direct consequence of the integration of the interconnect into
Raw’s pipeline and Raw’s early pipeline commit point. We will fur-
ther discuss the comparison with iWarp here, but see [45] for more
details on comparing networks for ILP.

Raw supports statically orchestrated communication like iWarp
or NuMesh [39]. iWarp and NuMesh support a small number of
fixed communication patterns, and can switch between these pat-
terns quickly. However, establishing a new pattern is more expen-
sive. Raw supports statically orchestrated communication by using
a programmable switch which issues an instruction each cycle. The
instruction specifies the routes through the switch during that cycle.

Because the switch program memory in Raw is large, and virtualized
through caching, there is no practical architectural limit on the num-
ber of simultaneous communication patterns that can be supported
in a computation. This virtualization becomes particularly impor-
tant for supporting ILP, because switch programs become as large or
even larger than the compute programs.

Processors like Grid [33] and ILDP [18] are targeted specifi-
cally for ILP and propose to use low latency scalar operand net-
works. Raw shares in their ILP philosophy, and implements a static-
transport, point-to-point scalar operand network, while Grid uses a
dynamic-transport, point-to-point network, and ILDP uses a broad-
cast based dynamic-transport network. Both Raw and Grid per-
form compile time instruction assignment to compute nodes, while
ILDP uses dynamic assignment of instruction groups. Raw uses
compile-time operand matching, while Grid uses dynamic associa-
tive operand matching queues, and ILDP’s dynamic scheme uses
full-empty bits on distributed register files. Accordingly, using the
AsTrO categorization (Assignment, Transport, Ordering) from [46],
Raw, Grid and ILDP can be classified as SSS, SDD, and DDD archi-
tectures respectively, where S stands for static and D for dynamic.
Both the Grid and ILDP designs project lower network 5-tuples than
Raw, but the final numbers should be forthcoming as their imple-
mentations mature. Taken together, Grid, ILDP and Raw represent
three distinct points in the scalar operand network design space,
ranging from the more compile-time oriented approach as in Raw,
to the dynamic approach as in ILDP.

Raw took inspiration from the Multiscalar processor [40], which
uses a separate one-dimensional network to forward register values
between ALUs. Raw generalizes the basic idea, and supports a two-
dimensional programmable mesh network both to forward operands
and for other forms of communication.

Both Raw and SmartMemories [28] share the philosophy of an ex-
posed communication architecture, and represent two design points
in the space of tiled architectures that can support multiple forms
of parallelism. Raw uses homogeneous, programmable static and
dynamic mesh networks, while SmartMemories uses programmable
static communication within a local collection of nodes, and a
dynamic network between these collections of nodes. The node
granularities are also different in the two machines. Perhaps the
most significant architectural difference, however, is that Raw (like
Scale [22]) is modeless, while SmartMemories and Grid have modes
for different application domains. Another architecture that repre-
sents a natural extreme point in modes is Tarantula [9], which im-
plements two distinct types of processing units for ILP and vectors.
Raw’s research focus is on discovering and implementing a minimal
set of primitive mechanisms (e.g., scalar operand network) useful for
all forms of parallelism, while the modes approach implements spe-
cial mechanisms for each form of parallelism. We believe the mod-
eless approach is more area efficient and significantly less complex.
Looked at another way, for a given area, machines with modes must
demonstrate quantitatively better versatility numbers than modeless
machines to justify their increased complexity. Much like for GUIs
in the late 70’s, we believe the issue of modes versus modeless for
versatile processors is likely to be a controversial topic of debate in
the forthcoming years.

Finally, like VIRAM and Imagine, Raw supports vector and
stream computations, but does so very differently. Both VIRAM
and Imagine sport large memories or stream register files on one
side of the chip connected via a crossbar interconnect to multiple,
deep compute pipelines on the other. The computational model is
one that extracts data streams from memory, pipes them through the
compute pipelines, and then deposits them back in memory. In con-
trast, Raw implements many co-located smaller memories and com-

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

pute elements, interconnected by a mesh network. The Raw com-
putational model is more ASIC-like in that it streams data through
the pins and on-chip network to the ALUs, continues through the
network to more ALUs, and finally through the network to the pins.
Raw’s ALUs also can store data temporarily in the local memories
if necessary. We believe the lower latencies of the memories in Raw,
together with the tight integration of the on-chip network with the
compute pipelines, make Raw more suitable for ILP.

7. CONCLUSION
This paper describes the architecture and implementation of the

Raw microprocessor. Raw’s exposed ISA allows parallel applica-
tions to exploit all of the chip resources, including gates, wires
and pins. Raw supports ILP by scheduling operands over a scalar
operand network that offers very low latency for scalar data trans-
port. Raw’s compiler manages the effect of wire delays by orches-
trating both scalar and stream data transport. The Raw processor
demonstrates that existing architectural abstractions like interrupts,
caches, and context-switching can continue to be supported in this
environment, even as applications take advantage of the low-latency
scalar operand network and the large number of ALUs.

Our results demonstrate that the Raw processor performs at or
close to the level of the best specialized machine for each applica-
tion class. When compared to a Pentium III, Raw displays one to
two orders of magnitude more performance for stream applications,
while performing within a factor of two for low-ILP applications. It
is our hope that the Raw research will provide insight for architects
who are looking for ways to build versatile processors that lever-
age the vast silicon resources while mitigating the considerable wire
delays that loom on the horizon.

Acknowledgments We thank our StreamIt collaborators, specif-
ically M. Gordon, J. Lin, and B. Thies for the StreamIt backend
and the corresponding section of this paper. We are grateful to
our collaborators from ISI East including C. Chen, S. Crago, M.
French, L. Wang and J. Suh for developing the Raw motherboard,
firmware components, and several applications. T. Konstantakopou-
los, L. Jakab, F. Ghodrat, M. Seneski, A. Saraswat, R. Barua, A.
Ma, J. Babb, M. Stephenson, S. Larsen, V. Sarkar, and several oth-
ers too numerous to list also contributed to the success of Raw. The
Raw chip was fabricated in cooperation with IBM. Raw is funded by
Darpa, NSF, ITRI and the Oxygen Alliance.

REFERENCES
[1] V. Agarwal, et al. Clock Rate versus IPC: The End of the Road for Conventional

Microarchitectures. 2000 ISCA, pp. 248–259.
[2] E. Anderson, et al. LAPACK: A Portable Linear Algebra Library for High-

Performance Computers. 1990 ICS, pp. 2–11.
[3] M. Annaratone, et al. The Warp Computer: Architecture, Implementation and Per-

formance. IEEE Transactions on Computers 36, 12 (December 1987), pp. 1523–
1538.

[4] J. Babb, et al. The RAW Benchmark Suite: Computation Structures for General
Purpose Computing. 1997 FCCM, pp. 134–143.

[5] R. Barua, et al. Maps: A Compiler-Managed Memory System for Raw Machines.
1999 ISCA, pp. 4–15.

[6] M. Bohr. Interconnect Scaling - The Real Limiter to High Performance ULSI.
1995 IEDM, pp. 241–244.

[7] D. Chinnery, et al. Closing the Gap Between ASIC & Custom. Kluwer Academic
Publishers, 2002.

[8] K. Diefendorff. Intel Raises the Ante With P858. Microprocessor Report (January
1999), pp. 22–25.

[9] R. Espasa, et al. Tarantula: A Vector Extension to the Alpha Architecture. 2002
ISCA, pp. 281–292.

[10] S. Goldstein, et al. PipeRench: A Coprocessor for Streaming Multimedia Accel-
eration. 1999 ISCA, pp. 28–39.

[11] M. I. Gordon, et al. A Stream Compiler for Communication-Exposed Architec-
tures. 2002 ASPLOS, pp. 291–303.

[12] T. Gross, et al. iWarp, Anatomy of a Parallel Computing System. The MIT Press,
Cambridge, MA, 1998.

[13] L. Gwennap. Coppermine Outruns Athlon. Microprocessor Report (October
1999), p. 1.

[14] J. R. Hauser, et al. Garp: A MIPS Processor with Reconfigurable Coprocessor.
1997 FCCM, pp. 12–21.

[15] R. Ho, et al. The Future of Wires. Proceedings of the IEEE 89, 4 (April 2001),
pp. 490–504.

[16] H. Hoffmann, et al. Stream Algorithms and Architecture. Technical Memo MIT-
LCS-TM-636, LCS, MIT, 2003.

[17] U. Kapasi, et al. The Imagine Stream Processor. 2002 ICCD, pp. 282–288.
[18] H.-S. Kim, et al. An ISA and Microarchitecture for Instruction Level Distributed

Processing. 2002 ISCA, pp. 71–81.
[19] J. Kim, et al. Energy Characterization of a Tiled Architecture Processor with On-

Chip Networks. 2003 ISLPED, pp. 424–427.
[20] A. KleinOsowski, et al. MinneSPEC: A New SPEC Benchmark Workload for

Simulation-Based Computer Architecture Research. Computer Architecture Let-
ters 1 (June 2002).

[21] C. Kozyrakis, et al. A New Direction for Computer Architecture Research. IEEE
Computer 30, 9 (September 1997), pp. 24–32.

[22] R. Krashinsky, et al. The Vector-Thread Architecture. 2004 ISCA.
[23] J. Kubiatowicz. Integrated Shared-Memory and Message-Passing Communication

in the Alewife Multiprocessor. PhD thesis, MIT, 1998.
[24] W. Lee, et al. Space-Time Scheduling of Instruction-Level Parallelism on a Raw

Machine. 1998 ASPLOS, pp. 46–54.
[25] W. Lee, et al. Convergent Scheduling. 2002 MICRO, pp. 111–122.
[26] D. Lenoski, et al. The Stanford DASH Multiprocessor. IEEE Computer 25, 3

(March 1992), pp. 63–79.
[27] R. Mahnkopf, et al. System on a Chip Technology Platform for .18 micron Digital,

Mixed Signal & eDRAM applications. 1999 IEDM, pp. 849–852.
[28] K. Mai, et al. Smart Memories: A Modular Reconfigurable Architecture. 2000

ISCA, pp. 161–171.
[29] D. Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Com-

puter 30, 9 (September 1997), pp. 37–39.
[30] J. McCalpin. STREAM: Sustainable Memory Bandwidth in High Perf. Comput-

ers. http://www.cs.virginia.edu/stream.
[31] C. A. Moritz, et al. SimpleFit: A Framework for Analyzing Design Tradeoffs in

Raw Architectures. IEEE Transactions on Parallel and Distributed Systems (July
2001), pp. 730–742.

[32] S. Naffziger, et al. The Implementation of the Next-Generation 64b Itanium Mi-
croprocessor. 2002 ISSCC, pp. 344–345, 472.

[33] R. Nagarajan, et al. A Design Space Evaluation of Grid Processor Architectures.
2001 MICRO, pp. 40–51.

[34] M. Narayanan, et al. Generating Permutation Instructions from a High-Level De-
scription. TR UCB-CS-03-1287, UC Berkeley, 2003.

[35] M. Noakes, et al. The J-Machine Multicomputer: An Architectural Evaluation.
1993 ISCA, pp. 224–235.

[36] S. Palacharla. Complexity-Effective Superscalar Processors. PhD thesis, Univer-
sity of Wisconsin–Madison, 1998.

[37] N. Rovedo, et al. Introducing IBM’s First Copper Wiring Foundry Technology:
Design, Development, and Qualification of CMOS 7SF, a .18 micron Dual-Oxide
Technology for SRAM, ASICs, and Embedded DRAM. Q4 2000 IBM MicroNews,
pp. 34–38.

[38] J. Sanchez, et al. Modulo Scheduling for a Fully-Distributed Clustered VLIW Ar-
chitecture. 2000 MICRO, pp. 124–133.

[39] D. Shoemaker, et al. NuMesh: An Architecture Optimized for Scheduled Com-
munication. Journal of Supercomputing 10, 3 (1996), pp. 285–302.

[40] G. Sohi, et al. Multiscalar Processors. 1995 ISCA, pp. 414–425.
[41] J. Suh, et al. A Performance Analysis of PIM, Stream Processing, and Tiled Pro-

cessing on Memory-Intensive Signal Processing Kernels. 2003 ISCA, pp. 410–
419.

[42] M. B. Taylor. Deionizer: A Tool For Capturing And Embedding I/O
Calls. Technical Memo, CSAIL/Laboratory for Computer Science, MIT, 2004.
http://cag.csail.mit.edu/∼mtaylor/deionizer.html.

[43] M. B. Taylor. The Raw Processor Specification. Technical Memo,
CSAIL/Laboratory for Computer Science, MIT, 2004.

[44] M. B. Taylor, et al. The Raw Microprocessor: A Computational Fabric for Soft-
ware Circuits and General-Purpose Programs. IEEE Micro (Mar 2002), pp. 25–35.

[45] M. B. Taylor, et al. Scalar Operand Networks: On-Chip Interconnect for ILP in
Partitioned Architectures. 2003 HPCA, pp. 341–353.

[46] M. B. Taylor, et al. Scalar Operand Networks: Design, Implementation, and Anal-
ysis. Technical Memo, CSAIL/LCS, MIT, 2004.

[47] W. Thies, et al. StreamIt: A Language for Streaming Applications. 2002 Compiler
Construction, pp. 179–196.

[48] E. Waingold, et al. Baring It All to Software: Raw Machines. IEEE Computer 30,
9 (September 1997), pp. 86–93.

[49] D. Wentzlaff. Architectural Implications of Bit-level Computation in Communi-
cation Applications. Master’s thesis, LCS, MIT, 2002.

[50] R. Whaley, et al. Automated Empirical Optimizations of Software and the ATLAS
Project. Parallel Computing 27, 1–2 (2001), pp. 3–35.

[51] S. Yang, et al. A High Performance 180 nm Generation Logic Technology. 1998
IEDM, pp. 197–200.

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04)
1063-6897/04 $ 20.00 © 2004 IEEE

